Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστημίου Κρήτης

ΕΤΥ 500: Συμμετρια στην Επιστημη Υλικων

Το μάθημα αυτό είναι προχωρημένο προπτυχιακό και μεταπτυχιακό μάθημα, με σκοπό τη γνωριμία με τα μαθηματικά εργαλεία που απαιτούνται για τη θεωρητική μελέτη αλλά και το χαρακτηρισμό υλικών.

Το μάθημα δίνεται ως αυτομελέτη από τον Ι. Ρεμεδιάκη, και για να το περάσει κάποιος/α πρέπει να παραδώσει λυμένες περίπου 100 ασκήσεις και να κάνει μια παρουσίαση στο τέλος. Έχει προαπαιτούμενα τα 116 και 305 για τους προπτυχιακούς φοιτητές.

Σκοπός του μαθήματος είναι η εξοικείωση με τη μαθηματική θεμελίωση της επιστήμης των υλικών, με χρήση των συμμετριών που υπάρχουν σε κάθε στερεό. Αφού αναπτυχθούν τα βασικά μαθηματικά εργαλεία, μελετώνται φαινόμενα των υλικών όπου η συμμετρία παίζει καθοριστικό ρόλο, όπως τεχνικές χαρακτηρισμού με περίθλαση, πιεζοηλεκτρισμός, και μηχανικές ιδιότητες των υλικών.

Το πρώτο μάθημα θα γίνει την Παρασκευή 30/9/16 και ώρα 12-1 στο γραφείο του διδάσκοντα, Β207 κτήριο υπολογιστών.

Ενδεικτικά Περιεχόμενα

  1. Θεωρία ομάδων. Ομάδες συμμετρίας σημείου. Αναπαραστάσεις. Ομάδα μεταφοράς στο χώρο, κρυσταλλικές συμμετρίες.
  2. Εφαρμογές της θεωρίας ομάδων. Ιδιοταλαντώσεις μορίων, φασματοσκοπία υπερύθρου και Raman. Περίθλαση από κρυστάλλους. Ιδιότητες κυματοσυναρτήσεων σε στερεά.
  3. Μηχανικές ιδιότητες. Τανυστές τάσης και παραμόρφωσης. Ελαστικές σταθερές. Εξαρθρώσεις. Θερμική διαστολή και Θερμοηλεκτρικά φαινόμενα. Διάδοση κυμάτων σε συνεχή μέσα.
  4. Ηλεκτρικές ιδιότητες. Ιδιότητες του τανυστή της διηλεκτρικής συνάρτησης. Πιεζοηλεκτρικά φαινόμενα.

Εργασίες

  1. Συμμετρία σε μόρια και η έννοια των ομάδων. Θεωρία: Atkins-Friedman 5.1-5.4, Nowick 3-1, Βέργαδος 1.1-1.4, Newnham 3. Ασκήσεις: Βέργαδος 1.2.4, 1.2.11, 1.3.5, 1.3.6, 1.4.1, 1.4.2, 1.4.13, Nowick 3-2, 3-3, 3-4.
  2. Η θεωρία γραμμικής απόκρισης και οι βασικοί τανυστές που την περιγράφουν. Θεωρία: Nowick 1-1 έως 1-4, 2, Newnham 1.1, 1.2, 2, 5. Ασκήσεις: Newnham 2.1, 2.2, 2.3, 5.1, Nowick 2-1, 2-2, 2-3.
  3. Θεωρία ομάδων Ι: κλάσεις, αναπαραστάσεις. Θεωρία: Atkins-Friedman 5.5-5.6, Nowick 3-2, Βέργαδος 1.6-1.7, 2.1-2.4 Ασκήσεις: Nowick: 3-7, Newnham: 4.1, 4.2, Atkins-Friedman: 5.3, 5.4, 5.6, 5.7, Βέργαδος: 1.6.5, 1.7.4, 2.4.1. Δείτε πίνακα με διαφορετικές ονομασίες των ομάδων.
  4. Θεωρία ομάδων ΙΙ: Αναγωγή αναπαραστάσεων και μη αναγωγίσιμες αναπαραστάσεις, πίνακες χαρακτήρων, συντεταγμένες συμμετρίας. Θεωρία: Atkins-Friedman 5.5-5.15, Nowick 3-2 έως 3-5, Βέργαδος 2.4-2.12 Ασκήσεις: Atkins-Friedman: 5.8-5.17.
  5. Επανάληψη και απλές εφαρμογές: στροφορμή, μοριακά τροχιακά. Θεωρία: Atkins-Friedman 5.16-5.20, Βέργαδος 3.5 Ασκήσεις: Βέργαδος: 2.10.3, 2.12.4, 3.3.1, 3.3.4, Atkins-Friedman: 5.18-5.21, 5.24, 5.25
  6. Ενεργειακές στάθμες στην μέθοδο LCAO. Θεωρία: Atkins-Friedman 8.6-8.10, Βέργαδος 3.2, Dresselhaus κεφ. 7. Δείτε εικόνες, ορισμό u και g και πρόγραμμα υπολογισμού για διατομικά μόρια. Ασκήσεις: Atkins-Friedman: 8.11-8.29 (λύστε 10 ασκήσεις από αυτές).
  7. Ταλαντώσεις μορίων. Θεωρία: Atkins-Friedman, 10.1-10.12 (πληροφοριακά), 10.13, 10.15 Βέργαδος κεφ. 3-3, 3-4, Dresselhaus κεφ. 8. Ασκήσεις: Atkins-Friedman: 10.11, 10.21, 10.23-10.26, Dresselhaus 8.1, 8.2.
  8. Ομάδες χώρου. Θεωρία: Dresselhaus κεφ. 9, Βέργαδος κεφ. 4. Ασκήσεις: όλες από Dreselhaus.
  9. Αρχή του Neumann και εφαρμογή σε τανυστές τάξης 0,1 και 2. Θεωρία: Nowick κεφ. 4 και 6, Powell κεφ. 3, Newnham κεφ. 5. Ασκήσεις: Newnham 5.1, 5.2, Nowick 4-1 έως 4-4, 4-7, 6-1, 6-2, 6-4
  10. Πυροηλεκτρισμός, διηλεκτρική σταθερά, πιεζοηλεκτρισμός. Θεωρία: Newnham κεφ. 8, 9, 12. Ασκήσεις: όλες (2+2+3) από τα κεφ. 8, 9, 12 του Newnham.

Ιστοσελίδες και προγράμματα

  1. Group Explorer
  2. UC Davis ChemWiki: symmetry

Bιβλιογραφία

  1. Ι. Δ. Βέργαδος, Θεωρία Ομάδων, τόμος Α, κεφ. 1-4, Εκδόσεις Συμεών, Αθηνα 1991.
  2. P. Atkins and R. Friedman, Molecular Quantum Mechanics, 4th_Edition 2005
  3. A. S. Nowick, Crystal properties via group theory, Cambridge University Press 1995
  4. R. E. Newnham, Properties of Materials: Anisotropy|Symmetry|Structure, Oxford University Press 2005.
  5. M. S. Dresselhaus, S. Dresselhaus, A. Jorio, Group Theory, Springer, 2008.
  6. P. W. M. Jacobs, Group theory with applications in chemical physics, Cambridge University Press, Cambridge, 2005.
  7. M. A. Armstrong, Ομάδες και συμμετρία, Leader Books, Αθήνα 2002.
  8. P. W. Atkins, Physical Chemistry, κεφ. 15 ("Molecular Symmetry"), Oxford University Press, Oxford, 6th edition, 1999.
  9. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, κεφ. 1, Butterworth-Heinemann, Oxford 1986.
  10. Richard C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, Springer 2010.

Valid HTML 4.01 Transitional Valid CSS!