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We present band-structure calculations of several semiconductors and insulators within the framework of
density-functional theory in the local-density approximat{BirT/LDA), employing the correction for excited
states proposed by Fritsche and co-workers. We applied the method to examine typical eléh&n@8,
compound group-IMSIC, SiGe, GeCand compound IlI-IV semiconductof&IN, AIP, AlAs, AlSb, GaN,

GaP, GaAs, GaSb, InP, InAs, InSland examined in detail the approximations involved in the conduction-
band energy correction. This quite simple metfiaferred to as generalized density-functional thgomhile

not a substitute for more rigorous theoretical approaches such @&\hmethod, gives results in reasonable
agreement with experiment. Thus, it makes possible the calculation of semiconductor band gaps with the
computational effort of a DFT/LDA calculation, at least for systems where more elaborate methods are not
readily applicable[S0163-182@99)02208-0

I. INTRODUCTION structure based oW theory. A correction of the band
structure, using the framework of the so-called generalized

In the past two decades, remarkable progress has be nsity-functional theory(GDFT), was also proposed by

madg toward. accurate ca'lculations of the Fotal energy, ”_Sinﬁritsche and co-workerd Fritsche’s approach has the added
density-functional theory in the local-density 9ppr0x'mat'°nadvantage of relying entirely on quantities obtained in a
(DFT/LDA) (Refs. 1 and and more recently in the gener- pet)| pa calculation, so that it is both inherently consistent
alized gradient approximatichin contrast, the problem of ng computationally efficient. In the present paper we exam-
accurate band-gap calculations for semiconductors and inSghe the ability of this approach to give reasonably accurate
lators remains an important theoretical challenge. The quastesults for the minimum band gap of semiconductors. The
particle spectrum and the electronic excitation properties arpaper is organized as follows: In Sec. Il we review the basic
much more difficult to compute accurately than the total enideas of GDFT, including the correction to the DFT/LDA
ergy, and DFT/LDA gives unacceptable results for theseeigenvalues, and give a detailed discussion of the approxi-
quantities(often more than 50% off from experimental val- mations which lead to it. In Sec. lll we present an application
ues. The electronic excitation problem has been addressedf the method to elemental and compound semiconductors
by Hedin’sGW approximatiorf: Applications of this theory, and discuss the results we obtained. We conclude in Sec. IV
beginning with the work of Hybertsen and Lodi&odby,  With some remarks on the usefulness of this theory.
Schiiter, and Sharfi,and other workers® have proven very
successful: this scheme works essentially perfectly for a wide
range of materials, including perfect crystals, surfaces, point
defects, etc. However, th& W method requires significant The main idea of both the GDFT and the DFT approach is
additional computational effort over DFT/LDA because itto map the real system of interacting electrons to one of
involves the computation of the dielectric function and thefictitious, noninteracting particles. A theory of this kind
Green’s function, and relies on the solution of the Dysonshould prove that such a mapping is not only possible but
equation, which is more demanding than the single-particleinique, and additionally, it should give a recipe for calculat-
Kohn-Sham equations due to the energy dependence of thieg the properties of the real system from those of the ficti-
self-energy operator. tious one. The theorem of Hohenberg and Kobmtes that
From a practical point of view, it would be very desirable all ground-state properties can be expressed uniquely using
to have a simple, efficient, and reasonably accurate schenfenctionals of the density; this implies that if the ground-
for the calculation of band gaps without extensive computastate density of the fictitious system equals that of the real
tional effort beyond that required for a DFT/LDA calcula- one, then, at least for the ground state, all properties of the
tion. For example, a fast but reasonably reliable method fotwo systems are identical.
calculating electronic excitations would be very useful as a The GDFT approach is based on the observation that
guide for the design of new materials which have not yetknowledge of the pair density,(r,r') allows the determi-
been produced in the laboratory, for optical and electronimation of the exchange and correlation effects, whether the
device applications. state under consideration is the ground state or an excited
Several attempts have been made towards such a simpbine. There exists a relationship between the infinitesimal
fied scheme. Interesting examples are the theory of Shamrhange of the densit§p and the corresponding chandg,,
and Schiiter? which is based on the discontinuity of the which gives again a central role to the density. Based on this
exchange and correlation potential, and the work of Gygi andheoretical framework, Fritsche derived a simple formula for
Baldereschi, which gives a correction to the LDA band correcting the excitation energies of the single-particle

Il. REVIEW OF GDFT
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spectrum, which, as is well known, are incorrect within DFT.where f("(r,r') is the correlation factor. Th&{? defined
The question of whether or not GDFT can describe in anere is clearly different from the DFT one as already pointed
practical way all excited states is still open, but the methodyyt by Biaginil! but EECFT and Effc’) change in the same way
seems to work reasonably well when applied to the first fewyhen the density changes, that WO (r)=VT(r) as ar-
conduction bands of semiconductors, as the results presentgfleq py Fritsché? Thus, GDFT coincides with DET when
below indicate. _ _ o the ground state is considered.

In the following we give a brief description of GDFT and  1he N orbitals which are contained i, have to be

the correction to the eigenvalues of excited states for tWQgjected so that the density equals that derived directly from
reasons: first so that we provide the reader with a completg, 4 therefore the following relation holds:
n» .

description of the calculations presented, and second, and

more importantly, so that we can identify in detail all the

approximations involved, which has not been done explicitly pn(r)ENf W (r,ro, ... k) |2d3r ;- - d3ry
elsewhere. We only include here the steps that are absolutely

necessary to make the approximations evident, and refer the - 3
reader to the original work for more detailed derivations. For = [ [@n(r.r2, . r)[*d e - - dPry
simplicity, in the present work we will omit spin indices and
deal with an unpolarized electron gas. The extension to spin- _ 2 |¢/;<”)(r)|2 %)
polarized formulas is straightforward. ] i '
A. The GDFT concept The energyEn=(1;I'n|H|\Ifn> can be calculated in terms of
_ _ _ the ¢;'s andej’s.”™ The result is
The basic statement of GDFT is that any eigensiateof
the real-system Hamiltoniafin atomic units, 1( po(D)pn(r!)
En=2> elV—5 | ————d%d?’
N 2 n - j 2 ’
v: 1 j r=r’|
H:jEl —?-I—Vext(l'j) +§; m, (1)
= i
, , _ + f Lo (1) = Vi (N 1pg(r)dr, ®
can be uniquely mapped to a single Slater determidant
built from N orbitals which satisfy the Kohn-Sham iih
equations
1
v? eW(r =f MW(r N)dA, 9
{— 7+vext<r>+v<H”>(r)+v<x2><r>}w}”><r>=s}“>w§“><r), Pie (1) ] 2 (M) ©

2 Wheresi’g)(r,)\) is the exchange and correlation energy per

where V{(r) is the Hartree potential an¥{?(r) is the Particle in a system of electrons whose interaction is
function that connects the infinitesimal change of the density/e-e(":T") =.)\/|r—r’|.. By analogy, all quantities denoted by
with the corresponding change in the exchange and correlz?— Sc,ymbol with a bar imply a similar integral overas in Eq.

tion energy: 9).

5E§<2):f V;rg)(r)épn(r)d3r+f WO (r) o). B. Elementary excitations

The preceding discussion would be useful if one could
) find ¥,, and construct from it the densipy, and the poten-
For details about the meaning of andW, see the original tials, which in general is not feasible. However, when con-
work of Fritsche!® here we note only that for the ground sidering the ground state, the situation is much better be-

stateo(r)=0. Ex?:) is defined by cause the energy has to have a minimum: this leads to the
choice of theN lowest-energy orbitalg; for the sum in Eq.
1 ( pa(r)pn(r’) (7). This is a physically clear choice, although there is no
(Ve_e><“)55f —’d3rd3r’+E§£), (4)  rigorous proof of its validity. The next step is to find an
[r=r| approximation foV,. and solve Eq(2) self-consistently.

An elementary excitation of the systenlr,;, can be ap-
proximately mapped to a determinabt similar to ®, ex-
cept that it has an orbitay; whered, has ;. The other
orbitals in®, will be slightly different from the initial ones
due to the change of the density and the corresponding

where(V,.)(™ denotes the total electron-electron interaction
energy in the eigenstatk,, . If one defines the exchange and
correlation energy per particks? by

E&E)Ef e (r)pn(r)dsr, (5)  change of the potential. The correct excitation energy is
it is easy to find that AE=E;—Eo=er—&i+Ay. (10
v E(n , The above equation can be interpreted as meaning that the
1 pn(r)fM(r,r") . o
Mpy=— = | P T ) s (6)  eigenvalues of the Kohn-Sham Hamiltonié?) for the un-
sl(N=-15 , r, . onid)
[r—r’| occupied stategdenoted by the subscrif), which are not
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included in forming the Slater determinant from thidowest ) 5 © 5
ones(denoted by the subscrip}, have to be corrected and AExc:J po(r)AV,(r)d r+f Apo(r)V,c (r)d°r
the correction is

=g+ Ay (11 +f ApR(r)v;‘g>(r)d3r+f Ap(r) AV, (r)ddr.
(21)

The last term is almost zero, as we will show below.
To calculateAE,. we use the definitiort5) and Eq.(6),

Using Eqgs.(10) and (8) we have

A”_;i A= ABy+ AR~ AR, (12 omitting terms which are higher order than linear in changes
of the density.
with the definitions We can divide the change of the correlation factor into
two parts,Af, and Afg. These two terms do not have an
1 p(n)p(r’) obvious definition, but they do have a clear physical meaning
EHIEJ —drd®, (130 by analogy to the partition af p into Ap, andApg. These
r=r’| quantities can be calculated in the case whkfds the true
wave function of the system:
B | Bnpma, (19 z
2 e
FM(rrr)=— 22
Exe= f Vi Np(1)dr. (15 Pa(1)pa(r’)

Using the above division foAf, keeping terms only lin-
ear in changes of the density, and using the symmetry
f(r,r")y=1f(r",r), we have

The change of the density can be divided into two parts:

Ap=Apo+Apg, (16
where AExc:f 2elQ(NApo(Nd® +AE, +AEY, (23)

Apo=gs(N)]2= ()], (17)

and A pg is the responséhence the subscrifR) in the den-

sity due to the slight change of the orbitals not involved in

the transition. _ For the response terthEy, we can make use of E¢3),
We can treat the difference between the Kohn-Sham POsince A pr<Ap and for the ground state,=0:

tential for the excited state and that for the ground state as a

perturbation to the latter, and obtain for the eigenvalue dif- — © s
ference AExc:f Apr(r)Vi (r)dr. (25

= _ 1jPo(r)Po(r’)Af_o(ryr')

AE,=—5 , drd3’. (249
Ir=r’|

2

Using Egs.(12), (17), (19), (20), (21), (23), (25, and
— 2 3
Asj_f [ DITAVR(N+ AV, (18)  Gitting the small terms, we obtain the desired result,

so that Aﬁ=f [2610() = VO T (1) 2= (1) 2],
(26

> As:j po(NAV (r)d3r+f po(NAV,(r)d3r
EZ I ° : ° . which is the formula that Fritsch&gives.

Fritsche and Gtf noted that this expression is similar to
- f [ (1) |2[AV(r)+AV,(r)]d%.  (19)  the correction of the DFT quasiparticle spectrum obtained by
Godbyet al.® although a rigorous identification of the terms

The last term of the above expression is expected to be' the two expressions is lacking.

small.
The terms involving the Hartree potential can be written C. The approximations
in the form The previous derivation is exact, as we will show below,
in the case of a transition where the energy difference be-
5 1 3 tween the final and the initial state is small compared with
AEHzf po(N)AVy(r)dr + Ef Ap(r)AVy(r)d-r. the Fermi energy. This condition is satisfied in the cases we
(20) study, that is, the lowest conduction bands of semiconduc-
tors.

The last term is quadratic in the density change and thus it In perturbation theory the change of an eigenvalue de-
can be omitted. As for the term in E¢L5), we have pends linearly on the mean of the perturbation. This can be
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viewed from the opposite side: the difference between the TABLE I. Minimum band gaps as obtained from the present
effective potentialsv(l)—v(o) is indeed small. as it was GDFT/LDA calculations, compared to experiment &tV theory.

assumed in Eq18), if e;— ¢, is small compared witl; or For each material we give in the first row the gap at the experimen-

alternatively with the Fermi energy. Thus, the perturbativetal lattice constant and in the second row the gap at the theoretical

approach is correct for the lowest conduction bands of théatt'.Ce constantdetermined by minimizing the total enejgyEx-

semiconductors we study, since in these materials the ener grimental andSW values are taken from Ref. 13 and Ref. 8,
: ’ . . spectively, except where other references are given.

gap is about one-tenth of the Fermi energy. This smal

change of the potential shows that the density should also n%aterial

change much, since in principle the potential depends solely Lattice GareV)
on it. This is the reason why the terms quadratidjm can const.(A) GDFT/LDA Expt. GW)
be neglected.
Under the same conditions one expects that the respon$é 5.43 1.223 117 1.2
of the states not involved in the transition should be of less 5.38 1.168
importance. The excitation energy is very small compared¢: 3.57 4.718 5.48 5.4%3
}Nith the ground—statf (;:‘n(tarr]gyI and it is not expe_ctdedttc: indtL;]ce 355 4.748
arge rearrangements to the low-energy occupied states;
the change in the density due to the transition is dominate'? >-66 0.000 0.74 075
by the portionApy, when such an elementary excitation is 557 0.494
considered.
Similar arguments justify the neglect of the last term of SiC 4.36 2.646 2.39 2.3
Eq. (19). Having in mind the Hartree-Fock equations, where 4.32 2.624
each particle moves in the potential created by the others, thgice 5.50 1.239
change of the eigenvalue due to a perturbational change of 5.46 1.203
tmhzI remaining state@the portionApg) should be infinitesi- GeC 4.45 2808
Sham and Schiter® proved that for a semiconducting 4.50 2.818
system, where the one-particle energies form almost continu-
ous bands with a gap betweeg andey. 1, the exchange AIP 5.45 2.801 2.50 2.59
and correlation potential has a discontinuity when the num- 5.39 2.685
ber of particles changes frodd—1 to N+ 1, or equivalently  alas 5.62 2573 2.32 218
when the number of_qugsmar'qcle; changgs frﬁm_to +1 5.59 2543
(hgle or p(elr)u_cle(ia)xc[tat}o)n This discontinuity, which they GaP 544 2484 239 2 80
write asV,.’—V,.’, is independent of. They use the ap- 530 2 468
proximationV{_ )=V which is reasonable becausg_, ' '
; & ) . , 5.65 1.062 1.52 1.58
is very close tey .V, ’ andV,.’ have the physical meaning
of the effective potentials which govern the motion of a par- 551 L7
ticle or hole excitation, respectively. Th.) can be iden-
tified with ourV{2; then the differenc&Y)— V(@ mustbea AN 4.37 6.010
constant, so the last term in E1) is proportional to the 4.31 6.077
integral of Ap which is zero, since botpy andp, integrate  GaN 4.52 3.910 3.52
to the total number of electronbl, 4.37 4.621
Since there is a linear relation betweép, and 5p [it is
this _relation that leads to E_q3)] there is also a similar_ AISb 6.13 1.956 1.68 1.64
relation betweerdf and dp. It is then a reasonable approxi-
mation to omit the terms which are higher order than linear 6.06 2.009
in changes of the density in ER3). GaSb 6.12 0.259 0.80 0.62
A less clear approximation is that the second term on the 5.95 0.925
right side of Eq.(23) is small. The idea is that the change of
the density is more important than the change of the corremp 5.87 1.804 1.42 1.44
lation factor, that is, 5.66 2.550
L InAs 6.04 0.259 0.41 0.31
po(N)po(r")Afe(r,r') o o) 5.85 1.396
f 1] drd*r InSb 6.48 0.000 023  0.08
6.28 0.996

Apo(r)po(r ) FO(r,r’
<f Polr)pol ), ( )d3rd3r’. (27  ®Reference 5.
r=r’| bReference 14.
— _ ‘Reference 6.
Afy is the change irf when the states other thédmndi are  “Reference 7.
taken to be “frozen.” Fritsch¥ argues by analogy to the °Reference 15.
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exchange-only case that this term is indeed small, but a mO'VS(Z)(r)=V)';EA(r). The highest valence band played the role

thorough justification for omitting this term is lacking. of the initial statey; at eachk point in the Brillouin zone.
In Table | we present band gaps at both the experimental
Il IMPLEMENTATION AND RESULTS lattice constant and that derived from total energy minimiza-

tion (we refer to this as the theoretical lattice constawe
We used the familiar LDA expression for the exchange-use the latter lattice constant in the figures displaying the
correlation energy: band structures. For GeC and SiGe, which do not occur in
the zinc-blende structure, the lattice constant labeled “ex-
n LDA h erimental” is the average of the experimental lattice con-
£ (N =M (1) =g (pn(1)), (28) gtants of the elemental c?ystals. We upsed a plane-wave basis
ho . . with a cutoff of 24 Ry, except for C, SiC, and G€60 Ry)
v_vhere eqo"(p) is the exchange-correlation energy per par-ang AIN and GaN(70 Ry). A grid of 8X 8 8k points was
ticle of a homogeneous electron gas of dengityFor the  sed in the full Brillouin zone, reduced to a smaller set ac-
latter we use the results of Ceperley and Alder as they haV@ording to the symmetry of the crystal.
been parametrized by Perdew and ZunigéFhe interaction We calculated the band structure of seventeen semicon-

between valence electrons and ionic cores is described by thgictors and insulators in the zinc-blende or diamond lattice
nonlocal norm-conserving pseudopotentials of Bachelektrycture which we discuss in groups below.

et al!” The conduction-band structure was corrected using Ejemental group-IV semiconductor§he theory works
Eq. (11) while Eq.(26) was used withe{9(r)=£C%(r) and  essentially perfectly for Si, where the gap is the same with
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the experimental value for the theoretical lattice constant and Compound group-IV semiconductorResults in good

is off by 4.5% at the experimental lattice constant. For dia-agreement with experiment are also obtained for SiC, where

mond the gap is off by 15%. For germanium, at the experithe gap is off by 9%. It is interesting that the error in SiC is

mental lattice constant the method gives a zero gap, but theose to the average of the percentage errors for Si and C.

situation is better at the theoretical lattice constant, where th&his leads us to believe that the gap values for the other two

gap is off by 32%. We give the explicit band structures of Simixed group-1V material§SiGe and Ge{; if they could be

and C in Figs. 1 and 2 as examples. synthesized in the zinc-blende structure, would be correct to
For both Si and C the band gap is indirect, occurringabout 20%. We give the explicit band structure of SiC in Fig.

betweenl" [the valence-band maximufivBM) as in all the 3 as an example.

semiconductors we considefednd a point along thd'X The minimum gap is indirect for SiC, SiGe, and GeC with
line [the conduction-band minimut€BM)]. For Ge the gap the CBM occurring aKX for SiC and GeC, and alorigX for
is direct. SiGe.

Comparing these results with those from the work of Common polar 1lI-V semiconductarsVe performed cal-
Fritsche and Gd° which use a model correlation factor for culations for almost all polar 111-V semiconductors which are
£4c rather than a local approximation, we see that these awshown in Table I in the order they have in the Periodic Table.
thors achieved a better result for the band gap of C; wd~or Al compounds and GaAs we obtained good results
believe this difference is due to the small size of the core inwithin about 10% of experiment. For GaP the error is only
C which results in larger density gradients, making the locaB%. We give the explicit band structure of GaAs in Fig. 4 as

approximation employed here less accurate. an example.
20t .
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For AIP and AlAs the gap is indirect with the CBM Xt~ constant with the CBM occurring alordgX but very close to
GaAs has a direct gap. For GaP we found an indirect gap- AIN has an indirect minimum gap with the CBM At
with CBM alongI'X at the theoretical lattice constant, while  Compound I1I-V semiconductors with fifth-row elements
the same material at the experimental lattice constant has &€ gap values we obtained for Ill-V semiconductors involv-
direct gap. ing the fifth-row elements In and Sb are not as satisfactory.

Group-lll nitride wide gap semiconductorsRecently We believe the neglect of spin-orbit effects is partially re-
much attention has been focused on IlI-V materials with N agponsible for these poor results. Apparently, relativistic ef-
the group-V element, which are wide gap semiconductordects are important when studying the electronic behavior of
with possible applications in optoelectronics. These materialbeavier elements like In and Sh. The results are better for
appear both in the wurtzite and the zinc-bleridetastable  [I-Sb’s because due to the polar bond, the Sb core is
structures. In Figs. 5 and 6 we give the band structures foscreened; for the same reason, results are particularly poor
AIN and GaN as obtained from the present calculations fofor compounds containing In.
the zinc-blende structure. For AIN, where we were not able All these materials were found to have a direct minimum
to find experimental data for the zinc-blende structure, weyap, except AlSb, where the CBM occurs along F¢line.
estimate the band gap we calculated should deviate from the statistical data For the six materials for which we give

experimental value by about 10%. _ the band structure@igs. 1-6, the correction shows similar
GaN was found to have a direct gap at the theoretical

lattice constant and an indirect gap at the experimental lattice
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blende structure.

behavior: The mean valug\;;) is about 36% of the energy
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in intermediate rows of the Periodic Table like Si, AIP,
AlAs, GaAs, etc. The success of the method is obvious from
Fig. 7 where theoretical band gaps are plotted versus the
experimental values. The arrows show the correction to the
DFT values and clearly most points move close to the “exact
theory” line when the GDFT correction is applied. We ex-
cluded from this figure the case of compound IlI-V semicon-
ductors which involve fifth-row element$n and Sb, since

the neglect of spin-orbit coupling in the present work gives
considerably poorer results for those materials. In the same
figure the experimental lattice constant is used for GaN since
the theoretical one is off by more than 3.5%, which is sig-
nificantly worse than the rest.

We suggest that the simplicity of the method, which is
based on the well-known DFT/LDA scheme, its physical
clarity, and the relatively small computational effort it re-
quires render it a useful tool for reasonably reliable band-
structure calculations. We believe this work demonstrates
that the well studied DFT/LDA/pseudopotential scheme can
give results comparable to more rigorous methods, at least
for materials containing third- and fourth-row elements. For
other cases, qualitative results can be obtained. Since the

gap and has a fluctuation of about 33% around its meagorrection to the band structure is not constant as a function

value.

Ay is positive for the first conduction band, except in
some casefC,GaN around the poinW. In particular,Ay; is
positive for all materials in the regioh to X, which deter-

of k, as the upper panels in Figs. 1-6 demonstrate, this
theory appears to be more realistic than a “scissor operator”
which is often used as aad hocfix of DFT/LDA band-

structure calculations. Nevertheless, the method does involve

mines the minimum band gap. Accordingly, the minimumseveral approximations as discussed in Sec. Il C, some of
DFT/LDA band gap is increased in all cases, by about 40%wvhich cannot be rigorously justified. As such it cannot be
on average. This correction cannot be treated as a constagbnsidered a substitute for more rigorous exact treatments,

since it has large fluctuatiorisee Figs. 1-% especially for
the two nitrides(see Figs. 5 and)6
IV. SUMMARY AND CONCLUSIONS

In summary, GDFT/LDA/pseudopotential calculations
can be used to derive reasonable band structures for eleme

like GW theory.
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