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Band-structure calculations for semiconductors within generalized-density-functional theory

I. N. Remediakis and Efthimios Kaxiras*
Physics Department, University of Crete, 71110 Heraclion, Greece

~Received 20 August 1998!

We present band-structure calculations of several semiconductors and insulators within the framework of
density-functional theory in the local-density approximation~DFT/LDA!, employing the correction for excited
states proposed by Fritsche and co-workers. We applied the method to examine typical elemental~C,Si,Ge!,
compound group-IV~SiC, SiGe, GeC! and compound III-IV semiconductors~AlN, AlP, AlAs, AlSb, GaN,
GaP, GaAs, GaSb, InP, InAs, InSb!, and examined in detail the approximations involved in the conduction-
band energy correction. This quite simple method~referred to as generalized density-functional theory!, while
not a substitute for more rigorous theoretical approaches such as theGW method, gives results in reasonable
agreement with experiment. Thus, it makes possible the calculation of semiconductor band gaps with the
computational effort of a DFT/LDA calculation, at least for systems where more elaborate methods are not
readily applicable.@S0163-1829~99!02208-0#
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I. INTRODUCTION

In the past two decades, remarkable progress has
made toward accurate calculations of the total energy, u
density-functional theory in the local-density approximati
~DFT/LDA! ~Refs. 1 and 2! and more recently in the gene
alized gradient approximation.3 In contrast, the problem o
accurate band-gap calculations for semiconductors and i
lators remains an important theoretical challenge. The qu
particle spectrum and the electronic excitation properties
much more difficult to compute accurately than the total
ergy, and DFT/LDA gives unacceptable results for the
quantities~often more than 50% off from experimental va
ues!. The electronic excitation problem has been addres
by Hedin’sGW approximation.4 Applications of this theory,
beginning with the work of Hybertsen and Louie,5 Godby,
Schlüter, and Sham,6 and other workers7,8 have proven very
successful: this scheme works essentially perfectly for a w
range of materials, including perfect crystals, surfaces, p
defects, etc. However, theGW method requires significan
additional computational effort over DFT/LDA because
involves the computation of the dielectric function and t
Green’s function, and relies on the solution of the Dys
equation, which is more demanding than the single-part
Kohn-Sham equations due to the energy dependence o
self-energy operator.

From a practical point of view, it would be very desirab
to have a simple, efficient, and reasonably accurate sch
for the calculation of band gaps without extensive compu
tional effort beyond that required for a DFT/LDA calcula
tion. For example, a fast but reasonably reliable method
calculating electronic excitations would be very useful a
guide for the design of new materials which have not
been produced in the laboratory, for optical and electro
device applications.

Several attempts have been made towards such a sim
fied scheme. Interesting examples are the theory of S
and Schlu¨tter,9 which is based on the discontinuity of th
exchange and correlation potential, and the work of Gygi a
Baldereschi,7 which gives a correction to the LDA ban
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structure based onGW theory. A correction of the band
structure, using the framework of the so-called generali
density-functional theory~GDFT!, was also proposed by
Fritsche and co-workers.10 Fritsche’s approach has the add
advantage of relying entirely on quantities obtained in
DFT/LDA calculation, so that it is both inherently consiste
and computationally efficient. In the present paper we exa
ine the ability of this approach to give reasonably accur
results for the minimum band gap of semiconductors. T
paper is organized as follows: In Sec. II we review the ba
ideas of GDFT, including the correction to the DFT/LD
eigenvalues, and give a detailed discussion of the appr
mations which lead to it. In Sec. III we present an applicat
of the method to elemental and compound semiconduc
and discuss the results we obtained. We conclude in Sec
with some remarks on the usefulness of this theory.

II. REVIEW OF GDFT

The main idea of both the GDFT and the DFT approach
to map the real system of interacting electrons to one
fictitious, noninteracting particles. A theory of this kin
should prove that such a mapping is not only possible
unique, and additionally, it should give a recipe for calcul
ing the properties of the real system from those of the fi
tious one. The theorem of Hohenberg and Kohn1 states that
all ground-state properties can be expressed uniquely u
functionals of the density; this implies that if the groun
state density of the fictitious system equals that of the r
one, then, at least for the ground state, all properties of
two systems are identical.

The GDFT approach is based on the observation
knowledge of the pair densityr2(r ,r 8) allows the determi-
nation of the exchange and correlation effects, whether
state under consideration is the ground state or an exc
one. There exists a relationship between the infinitesim
change of the densitydr and the corresponding changedr2 ,
which gives again a central role to the density. Based on
theoretical framework, Fritsche derived a simple formula
correcting the excitation energies of the single-parti
5536 ©1999 The American Physical Society
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spectrum, which, as is well known, are incorrect within DF
The question of whether or not GDFT can describe in
practical way all excited states is still open, but the meth
seems to work reasonably well when applied to the first f
conduction bands of semiconductors, as the results prese
below indicate.

In the following we give a brief description of GDFT an
the correction to the eigenvalues of excited states for
reasons: first so that we provide the reader with a comp
description of the calculations presented, and second,
more importantly, so that we can identify in detail all th
approximations involved, which has not been done explic
elsewhere. We only include here the steps that are absolu
necessary to make the approximations evident, and refe
reader to the original work for more detailed derivations. F
simplicity, in the present work we will omit spin indices an
deal with an unpolarized electron gas. The extension to s
polarized formulas is straightforward.

A. The GDFT concept

The basic statement of GDFT is that any eigenstateCn of
the real-system Hamiltonian~in atomic units!,

H5(
j 51

N F2
¹ j

2

2
1Vext~r j !G1

1

2(iÞ j

1

ur i2r j u
, ~1!

can be uniquely mapped to a single Slater determinantFn ,
built from N orbitals which satisfy the Kohn-Sham
equations:2

F2
¹2

2
1Vext~r !1VH

~n!~r !1Vxc
~n!~r !Gc j

~n!~r !5« j
~n!c j

~n!~r !,

~2!

where VH
(n)(r ) is the Hartree potential andVxc

(n)(r ) is the
function that connects the infinitesimal change of the den
with the corresponding change in the exchange and corr
tion energy:

dExc
~n!5E Vxc

~n!~r !drn~r !d3r 1E Wxc
~n!~r !dsn~r !d3r .

~3!

For details about the meaning ofs and W, see the original
work of Fritsche;10 here we note only that for the groun
states0(r )50. Exc

(n) is defined by

^Ve-e&
~n![

1

2E rn~r !rn~r 8!

ur2r 8u
d3rd3r 81Exc

~n! , ~4!

where^Ve-e&
(n) denotes the total electron-electron interacti

energy in the eigenstateCn . If one defines the exchange an
correlation energy per particle«xc

(n) by

Exc
~n![E «xc

~n!~r !rn~r !d3r , ~5!

it is easy to find that

«xc
~n!~r !52

1

2E rn~r 8! f ~n!~r ,r 8!

ur2r 8u
d3r 8, ~6!
.
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where f (n)(r ,r 8) is the correlation factor. TheExc
(n) defined

here is clearly different from the DFT one as already poin
out by Biagini,11 but Exc

DFT andExc
(0) change in the same wa

when the density changes, that is,Vxc
(0)(r )5Vxc

DFT(r ) as ar-
gued by Fritsche.12 Thus, GDFT coincides with DFT when
the ground state is considered.

The N orbitals which are contained inFn have to be
selected so that the density equals that derived directly f
Cn , and therefore the following relation holds:

rn~r ![NE uCn~r ,r2 , . . . ,rN!u2d3r 2•••d3r N

5E uFn~r ,r2 , . . . ,rN!u2d3r 2•••d3r N

5(
j

uc j
~n!~r !u2. ~7!

The energyEn5^CnuHuCn& can be calculated in terms o
the c j ’s and« j ’s.10 The result is

En5(
j

« j
~n!2

1

2E rn~r !rn~r 8!

ur2r 8u
d3rd3r 8

1E @ «̄xc
~n!~r !2Vxc

~n!~r !#rn~r !d3r , ~8!

with

«̄xc
~n!~r !5E

0

1

«xc
~n!~r ,l!dl, ~9!

where«xc
(n)(r ,l) is the exchange and correlation energy p

particle in a system of electrons whose interaction
Ve-e(r ,r 8)5l/ur2r 8u. By analogy, all quantities denoted b
a symbol with a bar imply a similar integral overl as in Eq.
~9!.

B. Elementary excitations

The preceding discussion would be useful if one co
find Cn and construct from it the densityrn and the poten-
tials, which in general is not feasible. However, when co
sidering the ground state, the situation is much better
cause the energy has to have a minimum: this leads to
choice of theN lowest-energy orbitalsc j for the sum in Eq.
~7!. This is a physically clear choice, although there is
rigorous proof of its validity. The next step is to find a
approximation forVxc and solve Eq.~2! self-consistently.

An elementary excitation of the system,C1 , can be ap-
proximately mapped to a determinantF1 similar to F0 ex-
cept that it has an orbitalc f whereF0 hasc i . The other
orbitals inF1 will be slightly different from the initial ones
due to the change of the density and the correspond
change of the potential. The correct excitation energy is

DE5E12E05« f2« i1D f i . ~10!

The above equation can be interpreted as meaning tha
eigenvalues of the Kohn-Sham Hamiltonian~2! for the un-
occupied states~denoted by the subscriptf ), which are not
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included in forming the Slater determinant from theN-lowest
ones~denoted by the subscripti ), have to be corrected an
the correction is

« f
corr5« f1D f i . ~11!

Using Eqs.~10! and ~8! we have

D f i5(
j Þ i

D« j2DEH1DĒxc2DExc8 , ~12!

with the definitions

EH5
1

2E r~r !r~r 8!

ur2r 8u
d3rd3r 8, ~13!

Ēxc5E «̄xc~r !r~r !d3r , ~14!

Exc8 5E Vxc~r !r~r !d3r . ~15!

The change of the density can be divided into two parts:

Dr5Dr01DrR , ~16!

where

Dr05uc f~r !u22uc i~r !u2, ~17!

andDrR is the response~hence the subscriptR) in the den-
sity due to the slight change of the orbitals not involved
the transition.

We can treat the difference between the Kohn-Sham
tential for the excited state and that for the ground state
perturbation to the latter, and obtain for the eigenvalue
ference

D« j5E uc j~r !u2@DVH~r !1DVxc~r !#d3r , ~18!

so that

(
j Þ i

D« j5E r0~r !DVH~r !d3r 1E r0~r !DVxc~r !d3r

2E uc i~r !u2@DVH~r !1DVxc~r !#d3r . ~19!

The last term of the above expression is expected to
small.

The terms involving the Hartree potential can be writt
in the form

DEH5E r0~r !DVH~r !d3r 1
1

2E Dr~r !DVH~r !d3r .

~20!

The last term is quadratic in the density change and thu
can be omitted. As for the term in Eq.~15!, we have
o-
a

f-

e

it

DExc8 5E r0~r !DVxc~r !d3r 1E Dr0~r !Vxc
~0!~r !d3r

1E DrR~r !Vxc
~0!~r !d3r 1E Dr~r !DVxc~r !d3r .

~21!

The last term is almost zero, as we will show below.
To calculateDĒxc we use the definition~5! and Eq.~6!,

omitting terms which are higher order than linear in chang
of the density.

We can divide the change of the correlation factor in
two parts,D f 0 and D f R . These two terms do not have a
obvious definition, but they do have a clear physical mean
by analogy to the partition ofDr into Dr0 andDrR . These
quantities can be calculated in the case whereFn is the true
wave function of the system:

f ~n!~r ,r 8!52

U(
j

c j
~n!* ~r 8!c j

~n!~r !U2

rn~r !rn~r 8!
. ~22!

Using the above division forD f , keeping terms only lin-
ear in changes of the density, and using the symme
f (r ,r 8)5 f (r 8,r ), we have

DĒxc5E 2«̄xc
~0!~r !Dr0~r !d3r 1DĒxc0

1DĒxc
R , ~23!

DĒxc0
52

1

2E r0~r !r0~r 8!D f̄ 0~r ,r 8!

ur2r 8u
d3rd3r 8. ~24!

For the response termDĒxc
R we can make use of Eq.~3!,

sinceDrR!Dr and for the ground states050:

DĒxc
R 5E DrR~r !Vxc

~0!~r !d3r . ~25!

Using Eqs.~12!, ~17!, ~19!, ~20!, ~21!, ~23!, ~25!, and
omitting the small terms, we obtain the desired result,

D f i5E @2«̄xc
~0!~r !2Vxc

~0!~r !#@ uc f~r !u22uc i~r !u2#d3r ,

~26!

which is the formula that Fritsche10 gives.
Fritsche and Gu10 noted that this expression is similar t

the correction of the DFT quasiparticle spectrum obtained
Godbyet al.,6 although a rigorous identification of the term
in the two expressions is lacking.

C. The approximations

The previous derivation is exact, as we will show belo
in the case of a transition where the energy difference
tween the final and the initial state is small compared w
the Fermi energy. This condition is satisfied in the cases
study, that is, the lowest conduction bands of semicond
tors.

In perturbation theory the change of an eigenvalue
pends linearly on the mean of the perturbation. This can
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viewed from the opposite side: the difference between
effective potentials,Ṽ(1)2Ṽ(0), is indeed small, as it wa
assumed in Eq.~18!, if « f2« i is small compared with« f or
alternatively with the Fermi energy. Thus, the perturbat
approach is correct for the lowest conduction bands of
semiconductors we study, since in these materials the en
gap is about one-tenth of the Fermi energy. This sm
change of the potential shows that the density should also
change much, since in principle the potential depends so
on it. This is the reason why the terms quadratic inDr can
be neglected.

Under the same conditions one expects that the resp
of the states not involved in the transition should be of l
importance. The excitation energy is very small compa
with the ground-state energy and it is not expected to ind
large rearrangements to the low-energy occupied states;
the change in the density due to the transition is domina
by the portionDr0 when such an elementary excitation
considered.

Similar arguments justify the neglect of the last term
Eq. ~19!. Having in mind the Hartree-Fock equations, whe
each particle moves in the potential created by the others
change of the eigenvalue due to a perturbational chang
the remaining states~the portionDrR) should be infinitesi-
mal.

Sham and Schlu¨tter9 proved that for a semiconductin
system, where the one-particle energies form almost cont
ous bands with a gap between«N and «N11 , the exchange
and correlation potential has a discontinuity when the nu
ber of particles changes fromN21 to N11, or equivalently
when the number of quasiparticles changes from21 to 11
~hole or particle excitation!. This discontinuity, which they
write asVxc

(1)2Vxc
(2) , is independent ofr . They use the ap-

proximationVxc
(2)5Vxc

(0) , which is reasonable because«N21

is very close to«N .Vxc
(1) andVxc

(2) have the physical meanin
of the effective potentials which govern the motion of a p
ticle or hole excitation, respectively. ThusVxc

(1) can be iden-
tified with ourVxc

(1) ; then the differenceVxc
(1)2Vxc

(0) must be a
constant, so the last term in Eq.~21! is proportional to the
integral ofDr which is zero, since bothr0 andr1 integrate
to the total number of electrons,N.

Since there is a linear relation betweendr2 anddr @it is
this relation that leads to Eq.~3!# there is also a similar
relation betweend f anddr. It is then a reasonable approx
mation to omit the terms which are higher order than lin
in changes of the density in Eq.~23!.

A less clear approximation is that the second term on
right side of Eq.~23! is small. The idea is that the change
the density is more important than the change of the co
lation factor, that is,

E r0~r !r0~r 8!D f̄ 0~r ,r 8!

ur2r 8u
d3rd3r 8

!E Dr0~r !r0~r 8! f̄ ~0!~r ,r 8!

ur2r 8u
d3rd3r 8. ~27!

D f̄ 0 is the change inf̄ when the states other thanf and i are
taken to be ‘‘frozen.’’ Fritsche10 argues by analogy to th
e
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TABLE I. Minimum band gaps as obtained from the prese
GDFT/LDA calculations, compared to experiment andGW theory.
For each material we give in the first row the gap at the experim
tal lattice constant and in the second row the gap at the theore
lattice constant~determined by minimizing the total energy!. Ex-
perimental andGW values are taken from Ref. 13 and Ref.
respectively, except where other references are given.

Material Lattice Gap~eV!

const.~Å! GDFT/LDA Expt. (GW)

Si 5.43 1.223 1.17 1.21a

5.38 1.168

C 3.57 4.718 5.48 5.43a

3.55 4.748

Ge 5.66 0.000 0.74 0.75a

5.57 0.494

SiC 4.36 2.646 2.39 2.34b

4.32 2.624

SiGe 5.50 1.239

5.46 1.203

GeC 4.45 2.808

4.50 2.818

AlP 5.45 2.801 2.50 2.59

5.39 2.685

AlAs 5.62 2.573 2.32 2.18c

5.59 2.543

GaP 5.44 2.484 2.39 2.80d

5.30 2.468

GaAs 5.65 1.062 1.52 1.58c

5.51 1.717

AlN 4.37 6.010

4.31 6.077

GaN 4.52 3.910 3.52e

4.37 4.621

AlSb 6.13 1.956 1.68 1.64

6.06 2.009

GaSb 6.12 0.259 0.80 0.62

5.95 0.925

InP 5.87 1.804 1.42 1.44

5.66 2.550

InAs 6.04 0.259 0.41 0.31

5.85 1.396

InSb 6.48 0.000 0.23 0.08

6.28 0.996

aReference 5.
bReference 14.
cReference 6.
dReference 7.
eReference 15.
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FIG. 1. Band structure of Si~lower panel! and
D f i correction for the two lowest conduction lev
els ~upper panel!. The apparent cusps inD f i cor-
respond to band crossings.
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exchange-only case that this term is indeed small, but a m
thorough justification for omitting this term is lacking.

III. IMPLEMENTATION AND RESULTS

We used the familiar LDA expression for the exchang
correlation energy:

«̄xc
~n!~r !'«xc

LDA~r !5«xc
hom

„rn~r !…, ~28!

where «xc
hom(r) is the exchange-correlation energy per p

ticle of a homogeneous electron gas of densityr. For the
latter we use the results of Ceperley and Alder as they h
been parametrized by Perdew and Zunger.16 The interaction
between valence electrons and ionic cores is described b
nonlocal norm-conserving pseudopotentials of Bach
et al.17 The conduction-band structure was corrected us
Eq. ~11! while Eq. ~26! was used with«̄xc

(0)(r )5«xc
LDA(r ) and
re

-

-

ve

he
t

g

Vxc
(0)(r )5Vxc

LDA(r ). The highest valence band played the ro
of the initial statec i at eachk point in the Brillouin zone.

In Table I we present band gaps at both the experime
lattice constant and that derived from total energy minimi
tion ~we refer to this as the theoretical lattice constant!. We
use the latter lattice constant in the figures displaying
band structures. For GeC and SiGe, which do not occu
the zinc-blende structure, the lattice constant labeled ‘‘
perimental’’ is the average of the experimental lattice co
stants of the elemental crystals. We used a plane-wave b
with a cutoff of 24 Ry, except for C, SiC, and GeC~60 Ry!
and AlN and GaN~70 Ry!. A grid of 83838k points was
used in the full Brillouin zone, reduced to a smaller set a
cording to the symmetry of the crystal.

We calculated the band structure of seventeen semic
ductors and insulators in the zinc-blende or diamond lat
structure which we discuss in groups below.

Elemental group-IV semiconductors. The theory works
essentially perfectly for Si, where the gap is the same w
FIG. 2. Same as Fig. 1 for C.
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FIG. 3. Same as Fig. 1 for SiC.
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the experimental value for the theoretical lattice constant
is off by 4.5% at the experimental lattice constant. For d
mond the gap is off by 15%. For germanium, at the exp
mental lattice constant the method gives a zero gap, but
situation is better at the theoretical lattice constant, where
gap is off by 32%. We give the explicit band structures of
and C in Figs. 1 and 2 as examples.

For both Si and C the band gap is indirect, occurri
betweenG @the valence-band maximum~VBM ! as in all the
semiconductors we considered# and a point along theGX
line @the conduction-band minimum~CBM!#. For Ge the gap
is direct.

Comparing these results with those from the work
Fritsche and Gu,10 which use a model correlation factor fo
«xc rather than a local approximation, we see that these
thors achieved a better result for the band gap of C;
believe this difference is due to the small size of the core
C which results in larger density gradients, making the lo
approximation employed here less accurate.
d
-
i-
he
e

i

f

u-
e
n
l

Compound group-IV semiconductors. Results in good
agreement with experiment are also obtained for SiC, wh
the gap is off by 9%. It is interesting that the error in SiC
close to the average of the percentage errors for Si and
This leads us to believe that the gap values for the other
mixed group-IV materials~SiGe and GeC!, if they could be
synthesized in the zinc-blende structure, would be correc
about 20%. We give the explicit band structure of SiC in F
3 as an example.

The minimum gap is indirect for SiC, SiGe, and GeC w
the CBM occurring atX for SiC and GeC, and alongGX for
SiGe.

Common polar III-V semiconductors. We performed cal-
culations for almost all polar III-V semiconductors which a
shown in Table I in the order they have in the Periodic Tab
For Al compounds and GaAs we obtained good resu
within about 10% of experiment. For GaP the error is on
3%. We give the explicit band structure of GaAs in Fig. 4
an example.
FIG. 4. Same as Fig. 1 for GaAs.
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FIG. 5. Same as Fig. 1 for AlN.
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For AlP and AlAs the gap is indirect with the CBM atX.
GaAs has a direct gap. For GaP we found an indirect
with CBM alongGX at the theoretical lattice constant, whi
the same material at the experimental lattice constant h
direct gap.

Group-III nitride wide gap semiconductors. Recently
much attention has been focused on III-V materials with N
the group-V element, which are wide gap semiconduct
with possible applications in optoelectronics. These mater
appear both in the wurtzite and the zinc-blende~metastable!
structures. In Figs. 5 and 6 we give the band structures
AlN and GaN as obtained from the present calculations
the zinc-blende structure. For AlN, where we were not a
to find experimental data for the zinc-blende structure,
estimate the band gap we calculated should deviate from
experimental value by about 10%.

GaN was found to have a direct gap at the theoret
lattice constant and an indirect gap at the experimental la
p

a

s
rs
ls

or
r
e
e
he

constant with the CBM occurring alongGX but very close to
G. AlN has an indirect minimum gap with the CBM atX.

Compound III-V semiconductors with fifth-row elemen.
The gap values we obtained for III-V semiconductors invo
ing the fifth-row elements In and Sb are not as satisfacto
We believe the neglect of spin-orbit effects is partially r
sponsible for these poor results. Apparently, relativistic
fects are important when studying the electronic behavio
heavier elements like In and Sb. The results are better
III-Sb’s because due to the polar bond, the Sb core
screened; for the same reason, results are particularly
for compounds containing In.

All these materials were found to have a direct minimu
gap, except AlSb, where the CBM occurs along theGX line.

Statistical data. For the six materials for which we give
the band structures~Figs. 1–6!, the correction shows simila
FIG. 6. Same as Fig. 1 for GaN.
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behavior: The mean valuêD f i& is about 36% of the energy
gap and has a fluctuation of about 33% around its m
value.

D f i is positive for the first conduction band, except
some cases~C,GaN! around the pointW. In particular,D f i is
positive for all materials in the regionG to X, which deter-
mines the minimum band gap. Accordingly, the minimu
DFT/LDA band gap is increased in all cases, by about 4
on average. This correction cannot be treated as a cons
since it has large fluctuations~see Figs. 1–6!, especially for
the two nitrides~see Figs. 5 and 6!.

IV. SUMMARY AND CONCLUSIONS

In summary, GDFT/LDA/pseudopotential calculation
can be used to derive reasonable band structures for elem

FIG. 7. DFT ~open circles! and GDFT~filled circles! band gap
vs the experimental value for several semiconductors in the z
blende structure.
g
g

n

nt,

nts

in intermediate rows of the Periodic Table like Si, Al
AlAs, GaAs, etc. The success of the method is obvious fr
Fig. 7 where theoretical band gaps are plotted versus
experimental values. The arrows show the correction to
DFT values and clearly most points move close to the ‘‘ex
theory’’ line when the GDFT correction is applied. We e
cluded from this figure the case of compound III-V semico
ductors which involve fifth-row elements~In and Sb!, since
the neglect of spin-orbit coupling in the present work giv
considerably poorer results for those materials. In the s
figure the experimental lattice constant is used for GaN s
the theoretical one is off by more than 3.5%, which is s
nificantly worse than the rest.

We suggest that the simplicity of the method, which
based on the well-known DFT/LDA scheme, its physic
clarity, and the relatively small computational effort it r
quires render it a useful tool for reasonably reliable ba
structure calculations. We believe this work demonstra
that the well studied DFT/LDA/pseudopotential scheme
give results comparable to more rigorous methods, at l
for materials containing third- and fourth-row elements. F
other cases, qualitative results can be obtained. Since
correction to the band structure is not constant as a func
of k, as the upper panels in Figs. 1–6 demonstrate,
theory appears to be more realistic than a ‘‘scissor opera
which is often used as anad hoc fix of DFT/LDA band-
structure calculations. Nevertheless, the method does inv
several approximations as discussed in Sec. II C, som
which cannot be rigorously justified. As such it cannot
considered a substitute for more rigorous exact treatme
like GW theory.
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